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I N T R O D U C T I O N  

The equation for the creeping motion of a spherical particle was derived more than one hundred 
years ago as an exact solution of the Navier-Stokes equations in spherical co-ordinates. After 
Stokes presented the first such solution for the steady-state motion of a spherical particle, 
Boussinesq (1885) and then Basset (1888) solved the unsteady flow problem of a sphere in a 
spatially uniform ambient flow. Oseen (1927) introduced a higher order of accuracy to the equation 
of  motion of  a sphere. More recently Maxey & Riley (1983) derived the equation of motion of a 
rigid sphere in an unsteady and non-uniform flow without slip at the interface. Auton et al. (1988) 
derived expressions for the forces exerted on a spherical particle due to rotation. Most of  the results 
on the equation of  motion of spheres in viscous fluids are discussed in two recent monograms by 
Leat (1992) and Kim & Karila (1992) and papers by Yang & Leal (1991), Lovalenti & Brady (1993) 
and Galindo & Gerbeth (1993). 

All the previous work for the forces on a sphere or the Lagrangian equations of motion of a 
sphere make use of  the no-slip condition on the interface of the sphere and the surrounding fluid. 
There are several cases of practical interest, where tangential slip between the two phases has been 
observed. Interfacial slip has been advocated in the motion of small aerosol particles in the upper 
atmosphere. Also Leung & Crowe (1993) have used interfacial slip to analyze and explain the 
motion of nanocluster particles resulting from vapor condensation. These nanoclusters were part 
of a materials process, attracted by thermophoresis and collected on the surface of a metal. Given 
the presence of  slip at the interface, the most plausible hypothesis about it is that the slip velocity 
is proportional to the tangential shear stress. 

It is observed that in the case of a viscous sphere, there are two characteristic times (r = ~2/v) 
for the fluid inside the sphere and the fluid outside the sphere. Therefore, there are two associated 
dimensionless parameters in the Laplace or Fourier domains (22 =s~2/v) .  However (with the 
exception of the works by Galindo & Gerbeth and Lovalenti & Brady ), we have found that in 
the studies pertaining to the motion of  a viscous sphere in a fluid, the authors have effectively used 
the same dimensionless equation for the inside and the outside flow domains with only one time 
or length scale parameter. They have also used the equality of these dimensionless velocities in the 
boundary conditions of the equations. This method has led to incorrect results in the Fourier 
domain and the time domain. Correct ways of solving the problem are to use dimensional 
parameters throughout the solution, to modify the dimensionless governing equations, or to modify 
the no-slip boundary conditions by using the ratio of viscosities. 

We have derived the correct solution for the equation of motion of a viscous sphere in the 
presence of interracial slip, given the two characteristic times of the problem. The slip appears in 
the boundary conditions and is modeled by a relation similar to Coulomb's law of friction. It is 
observed that the inclusion of the two viscosities and the presence of slip affects both the 
steady-state drag term and the history term in the equation of motion of a sphere. 
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T H E  S P H E R E  IN AN U N S T E A D Y  N O N - U N I F O R M  V E L O C I T Y  F I E L D  

We consider the motion of a viscous fluid, which results in a velocity field ui(x i, t) as measured 
with respect to a stationary co-ordinate system Oxtx2x3. We also consider the motion of a sphere 
of  radius ~ whose center is located at Y~(t) and is moving with velocity V~(t) with respect to the 
same co-ordinate system. The presence and motion of the sphere disturbs the velocity field ug (xj, t) 
and creates a new flow field, which is denoted as q~(xj, t). In order to study the motion of the sphere 
it is convenient to change the co-ordinate system to one located at the center of  the sphere and 
moving with it. Thus, a change of variables is made for the moving frame of reference: 

z = x -- Y ( t )  [ l ]  

Hence, a relative velocity of  the fluid with respect to the moving sphere may be derived in the new 
system of co-ordinates: 

w ( z ,  t )  = q(x ,  t)  - V ( t )  [2] 

The continuity and momentum equations for the fluid in the Oz~z2z 3 system may be written as 
follows: 

•u ' i-  0 [3a] 
0z, 

and 

p \ ~ [  + w j ~ )  = p \ g , - - ~ - j  - ~zi + I ~ ,  [3b] 

where p and p are the fluid density and dynamic viscosity and gi is the acceleration due to gravity. 
Any slip condition at the interface must be reflected on the boundary conditions of the 

differential equations. In the radial direction there can be no slip, since this would violate an 
essential kinematic condition. Therefore, slip may only be present in the tangential direction. Given 
the presence of slip, the most plausible assumption for a closure equation is that the tangential 
velocity difference is proportional to the tangential shear stress aro as alluded to by Basset (1888). 
This postulate is analogous to Coulomb's  law of friction for solid surfaces moving relatively to each 
other. The coefficient of  kinetic friction, /~, should depend on the material properties of the fluid 
and the sphere and not on the characteristics of  the velocity field developed. 

Hence, the boundary conditions for [3] at the surface of the sphere may be written in the 
following form: 

O'r0 
6w o = ~ -  and 6w r = 0 at Izl = ~. [4] 

It must be pointed out that fl = ~ corresponds to the zero slip condition, while fl =0,  corresponds 
to the perfect slip case. The boundary condition at the far field is that the effect of the sphere on 
the flow velocity diminishes to zero. 

Following the assumptions and method used by others (e.g. Maxey & Riley) we have separated 
the flow field outside the sphere in the undisturbed flow field w ° and the disturbance caused by 
the presence of the sphere wl. The two resultant flow fields satisfy the condition w~, ~ + wl = w, at 
all points. Furthermore,  the decomposition of the velocity fields satisfy their corresponding 
momentum equations. Thus, one may obtain the total force due to the undisturbed velocity field 
and, hence, derive the lagrangian equation of motion of the sphere. The latter is given as follows 
in the original frame of reference Ox~x2x3: 

d V i Dui YIn rn~ ~ = (rn~ -- m t )gi + mt ~ -  + FI. [5] 

Here m~ is the mass of  the sphere, m r is the mass of  the fluid, which occupies the same volume as 
the sphere and F] the force exerted by the flow field due to the disturbance. The derivative D/Dt 
is the lagrangian derivative following a fluid element. It is apparent that for the calculation of the 
equation of motion of the sphere the force F, ~ must be determined. 
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Fi' is first determined in the Laplace domain and then transformed analytically or numerically 
in the time domain. Since the expression for this disturbance force has been derived before (in the 
non-slip case) by several methods and the derivation is lengthy, we will not include it in this brief 
paper. This force in the Laplace domain and in the Oxjxzx3 system is as follows: 

Fi I = - 6Xe#l [ g i  (S) - -  U i (Y(t), s)] 

I2~ (21 + 1)2([2~ - 2~ tanh(22) - 2f(A2)]xa +f()*2)) "~ 
x , _ _ + 2 , + 1  [1+a(2,+3)1[2~ 2 ~ ~ ~ - ~ ~ - ~ + - ~ f ( 2 2 j J "  [61 

where the overbar denotes the Laplace transform of a function, x is the ratio of the fluid to sphere 
dynamic viscosities (x = ~/1//~2) and a is a dimensionless parameter related to the slip coefficient 
(a = lal/fie). The parameters 2~ and 22 are two dimensionless length scales for the fluid and for the 
sphere, defined as follows: 

2 , =  ~ a n d  )~2= S/~2 [7a] 
X/ v, X/ v2 

with s being the Laplace transformation variable and v the kinematic viscosity. The function f is 
defined by the following expression: 

f(~)  = (~2 + 3) tanh(¢) - 34. [7b] 

Because of its complexity, [6] cannot be transformed analytically to yield the resulting 
disturbance force in the time domain. However, parts of it may be transformed. Thus, the first term 
in the braces will yield an "added mass" contribution, the second term (which is proportional to 
the square root of s) will yield a history integral and the third term the steady-state drag term (as 
all three are known in the case of the solid sphere). Given the complexity of the last term, it is 
difficult to speculate the type of its contribution on the resultant force. The last term may be 
considered as a residue of all the above terms, applicable to the non-rigid spheres. In some special 
cases it becomes a "new memory integral," as was called by Lawrence Weinbaum (1986), but in 
general its contribution is more complex than a memory term. 

It is possible, under certain circumstances to transform the last term analytically and, hence, to 
derive the complete equation of motion of a viscous sphere for some special cases. 

SPECIAL CASES 

No-slip (or = O) 

This is probably the most widely used case with droplet flows. In this case [6] becomes: 

F~ = - 6 r c e # , [ ~ ( s ) - a i ( Y ( t ) , s ) ]  +(2,  + 1) [ 2 ~ - 2 ~ t a h n ( 2 ~ - - - 2 ~  +(2,  +3)f (22) /  

[8] 

This expression is the same as the one derived by Galindo & Gerbeth (1993) and by Lovalenti & 
Brady (1993). It is still impossible to transform it into the time domain analytically. It must be 
pointed out, however, that only if 2, = 22, it is essentially the same equation as the one derived 
by Kim & Karila (1991) and Yang & Leal (1991). 

Asymptotic behavior without slip. It is of interest to study the short- and long-term behavior of 
the history force on the sphere. A glance at [8] proves that the first three terms of the parentheses 
on the right-hand side will yield the added mass term, the history integral for the rigid sphere and 
the steady-state drag contribution. The rest may be considered as a residue function L(2~, 22, K). 
In this case the force due to the disturbance field is given by the following equation: 

- -  [ 2 + 3 K  K . 1 , 1 f,' = - - 6 r ~ ,  e/7~ 3 ( I  + ~:~ + ~ z, + ~ ) 4  + L(~:, 2 , ,  22) , [91 

where the vector Hi(t) is defined as: 

Hi(t) = Vi(t) - ui(Y(t), t). 
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The residue function L (ZL,)-2, K) is written in terms of one of the Z s and the ratio of  the kinematic 
viscosities 3'. Taking the limit for short times (very high s) one obtains the following expression 
for the residue function: 

~c(7 - 1)).~ 7(7 - -  6)  K2 - -  (47 -- 3)~," + 4 
L(,aq, 7, K) = + 

(7~c + 1)(1 + ~c) 3(1 -k K)(3,K + 1) 2 

1 (73--37)h "2 ( 3 + 4 7 2 ) h ' + 4 7  +0(). ,- ' ) .  [10] 
)-j ;,(7t, + 1) ~ 

The last expression may be transformed into the time domain to yield the following expression for 
the residue term at the limit of  short times: 

where 

fl ' dHi(z) 
FMi=6n~#~ G(t--z,~c, 7) d ~ T  dr, [lla] 

K(7 -- 1) 5),~ - -4  (37 73)K2 + (3 + 472)~c -- 43' \/~t 

a ( t ' t c ' ? ) - ( l + t c ) x f  ~ 3 ( l + ~ c ) ( ? K + l )  + " ; (TK+l)  ) ~ "  
[ l lb ]  

Similarly one may obtain an analytical expression for the residue term at long times, by letting 
s approach 0. The resulting expression for the predominant term in the function L is as follows 
in this asymptotic limit: 

4+3~c 
L(2~, ~c, 7) - 9(1 + ~ )  5'i' + O(),~) [12] 

The last expression may be transformed analytically in the time-domain to yield the following 
expression, which is actually a memory integral term: 

f ' 4 + 3~c dH, 
FMi=6neCbtl ~ ~ dr dr. [13] 

9(1 + ~c)- v n ( t  - r)  

It is observed that, at high values of t, the residue term is independent of the ratio 7. Sincc the 
equations are written in terms of )o~, this means that the new term is independent of the 
dimensionless time-scale 22. This may be interpreted in the following way: all memory integral 
terms represent the effect of  the diffusion of vortices inside a fluid domain. Given thc small size 
of  the sphere, at long times the vortices have already been "diffused" inside the fluid sphere, and, 
hence, their effect on the interior domain dissipates to zero. On the contrary the domain of the 
outside fluid is much larger and the created vortices continue to "'diffuse" even at longer times, 
thus affecting the current state of the sphere. 

A solid sphere Oc = oo) 

In this case the viscosity of  the sphere is very high in comparison to that of the fluid. Thus, there 
is only one dimensionless number 2 for the diffusion of momentum, outside the spherc. The force 
expression as given in [6] may be transformed into the time domain to yield the following 
expression: 

I dHi(t) 1 + 2a 6n~/& Hi(t ) [1 + 2 a ]  2 F~(t)= -~_m~ ~- 1+3o- o-[1 + 3o-] 6x~p' 

x exp ~ -, ~-a- / \ ~  "v/vl d r  - dz. [14] 

In the case of  zero slip (a = 0) [14] yields the known expression for a rigid sphere, which was first 
derived by Boussinesq (1885) and Basset (1888). 

In this case one may combine [5] and [6] to derive an analytical expression of the equation of 
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motion of the solid sphere, which is as follows: 

dVi Duiv . )  im dHi(t) I + 2 a  67r~#1Hi(t) ms ~ -  = [ms -- mf]g i 4- mr ~ -  -- 2 f ~- 1 + 3~r 

f0( )(+ [ l + 2 a ] :  [ l + 3 o ] = v i [ t - r ]  Erfc 1 3a dr. [15] 
a[l  + 3rr] 6rt~/~ exp 0{20.2 ~0" 

For clarity, in [14] and [15] parentheses enclose arguments of  functions, while multiplications are 
denoted by the square brackets; exp denotes the exponential function; Erfc denotes the complemen- 
tary error function. 

Regarding the physical interpretation of the various terms, the left-hand side of [15] is the mass 
times acceleration term on the sphere in a general frame of reference. The first term in the 
right-hand side is the gravity/bouyancy force acting on the sphere. The second term is the 
contribution of the acceleration of the fluid to the motion of the sphere. The third term is often 
called the added mass force. The fourth term is the usual steady-state drag force term. The fifth 
term on the right-hand side is the history force acting on the particle. In the non-slip case this term 
is often referred to as the "Basset term" despite the fact that Boussinesq derived it and published 
about it three years before Basset (Vojir & Michaelides 1993). It is apparent that if slip is present 
on the interface the kernel of the history integral is remarkably different than the one derived by 
Boussinesq and Basset for a rigid sphere. 

It is of interest to examine the effect a has on the magnitude of the history term. For  this reason 
calculations were made for the simple case where the particle follows a sinusoidal motion in a 
stagnant fluid. For  the calculations the fluid velocity was assumed to be zero and the particle 
velocity to be given by the expression Va(t)= (0, 0, cos eo0t ) with a dimensionless frequency ~o 0 
equal to 20. Figure 1 depicts the results for the dimensionless history term as a function of  time, 
with a a parameter. It is observed that the effect of  the history terms becomes highest when there 
is no slip or very little slip on the interface. When the slip parameter a increases, the magnitude 
of the history term decreases. Very little difference was observed in the calculations on the history 
term for values of  a greater than five. 
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A sphere with perfect slip (6 = oo) 
In this case the force due to the disturbance flow in the Laplace domain is: 

-- ['~ 2(1+)~,)7__ 
F,'=--6nlA~ -~ 3 T ~  I[Vi(s)-~(V~(t),s)]. [16] 

An analytical expression for the total force in the time domain may be obtained. This expression 
yields the following equation of motion for the sphere: 

dVi=[ms_mdgi+ Dui v(,)_½mrdd_),(t t) 4ne/~lHi(t) m , -~ -  mt -~-  

-87r~l~lffexp(9Vl~2Z])Erfc(3- rx~l[-t-r])dHi(z) dz. [17] 

This expression is fundamentally the same as the one derived by Morrison & Stewart (1976) who 
considered the motion of an inviscid bubble. They too derived an expression for the total force 
on a small bubble in an unsteady flow field, under the assumption P2 = 0. Their expression gives 
the resultant force in an implicit way through an integrodifferential expression, while [17] is given 
in an explicit form. It must be pointed out that [16] is identical to the corresponding expression 
derived by Morrison & Stewart. Equation [l 7] also yields the correct expression for the steady-state 
drag on a small sphere with perfect slip, which is FD, = 4n/t~Hi, which also appears in Happel & 
Brenner (1986). From the two analyses it is concluded that the assumptions of perfect slip or 
inviscid sphere result in the same final expression for the equation of motion of the sphere. 

C O N C L U S I O N S  

The equation for the creeping motion of a viscous sphere in an unsteady velocity field has been 
derived for the general case, where finite slip is present at the interface. A careful solution of the 
conservation equations reveals that the problem has two length scales for the diffusion of 
momentum (inside and outside the sphere). Both of these length scales come into the expression 
of the force due to the disturbance flow field. An analytical expression for the total force may be 
obtained in the Laplace space. This expression cannot be transformed in the time domain 
analytically. It may be transformed in the case of a rigid sphere and an inviscid bubble. In these 
cases it was observed that the history integral becomes more complicated than the one originally 
derived by Basset & Boussinesq. Calculations for the simple case of the sinusoidal motion of a 
particle in a still fluid have shown that the slip on the sphere diminishes the effect of the history 
term in the determination of the instantaneous velocity of the sphere. 
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